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Abstract

Human exploitation of marine resources is profoundly altering marine ecosystems, while cli-

mate change is expected to further impact commercially-harvested fish and other species.

Although the global fishery is a highly complex system with many unpredictable aspects, the

bioenergetic limits on fish production and the response of fishing effort to profit are both rela-

tively tractable, and are sure to play important roles. Here we describe a generalized, cou-

pled biological-economic model of the global marine fishery that represents both of these

aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS)

model. BOATS predicts fish production according to size spectra as a function of net primary

production and temperature, and dynamically determines harvest spectra from the biomass

density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish

biomass is determined by the economic forcings of catchability, ex-vessel price and cost per

unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a

large ensemble of idealized simulations with observational databases, focusing on historical

biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem

parameters, rule out most parameter combinations, and select an optimal ensemble of

model variants. Compared to the prior distributions, model variants with lower values of the

mortality rate, trophic efficiency, and allometric constant agree better with observations. For

most acceptable parameter combinations, natural mortality rates are more strongly affected

by temperature than growth rates, suggesting different sensitivities of these processes to cli-

mate change. These results highlight the utility of adopting large-scale, aggregated data

constraints to reduce model parameter uncertainties and to better predict the response of

fisheries to human behaviour and climate change.
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Introduction

Global oceanic wild fish harvest grew at a tremendous rate over the 20th century, increasing

by approximately a factor of four between 1950 and 1990 [1]. As a result, biomass has been

depleted relative to its pristine state [2, 3], altering ecosystem structures worldwide, with col-

lapses documented in between 7 and 25% of fisheries [4, 5]. Anthropogenic climate change is

altering primary production and temperature distributions worldwide [6], with impacts on the

ranges of various marine species [7, 8], and on their growth, mortality, reproduction, and

recruitment rates [9, 10]. Meanwhile, rapid and ongoing changes in fishing technology [11],

the demand for fish products [12], and regulation frameworks are driving changes in the dis-

tribution and intensity of fishing effort. Given future projections of increasing human popula-

tion, and consequent pressure on food resources, it is critical to develop improved predictive

understanding of how fisheries will evolve with interacting environmental and human drivers.

Numerical models of fishery-human interactions that can be coupled to representations of

the environment, often called end-to-end models, have been extremely helpful to shed light on

these issues [13, 14]. However, most of these models are designed primarily in order to study

internal ecosystem dynamics, and often include complex parameterizations that are challenging

to quantify, such as feeding relationships [15]. In addition, most of these models are designed to

represent the present-day community in a specific region, and therefore lack the generality and

flexibility required to represent long-term structural changes such as those caused by new inva-

sive species, climate-driven range shifts [7], or fishing-driven evolution [16]. The incomplete

view provided by a patchwork of regional models also hampers studies of global food security,

given the development of globally interwoven fishing fleets and fish-trading since the 1950’s.

Alternative ecological models that are structurally simpler, founded on macroecological

principles, and appropriate for a global range of conditions, have recently begun to allow the

direct prediction of fish biomass from environmental variables [17–23]. However, most of

these models were designed to study fish, rather than fishing. As a result, fish harvests are gen-

erally prescribed in these models, rather than treating the fishing effort as an interactive com-

ponent, which limits the consideration of economic factors such as changes in fishing

technology, market conditions, and regulatory regimes. Furthermore, an extensive exploration

of parameter uncertainty is challenging for most of these models due to complexity and/or

computational cost, and the simulated fish species may not be equivalent to those harvested,

making direct comparisons with observed historical harvest records difficult.

Here we describe the economic component and general characteristics of the BiOeconomic

mArine Trophic Size-spectrum model (BOATS), a computationally-efficient model which

directly couples a size spectrum model of fish biomass with an interactive economic model on a

spatially-resolved global grid. The ecological model, which is described in detail in [24], focuses

on a small number of robust bioenergetic principles of marine ecosystems that are of direct rele-

vance for fisheries and environmental change, predicting the growth of all commercially-har-

vested marine consumers, which we refer to as ‘fish’. The simulated fish spectrum is coupled

directly to a prognostic model of fishing effort, at the same grid scale, that evolves over time in

response to the local bioeconomically-determined profit. Because BOATS was designed to

include only fundamental processes and relatively few parameters, parameter uncertainty can

be addressed in a robust and comprehensive way by using a Monte Carlo approach. As dis-

cussed below, this allows us to select global parameter combinations that agree with observa-

tions at the scale of the Large Marine Ecosystems (LMEs), rather than being locally-tuned. We

show that, after optimization, the ensemble has a high degree of skill, making it suitable for

studies of first-order interactions between climate, the marine ecosystem and humans. We also

point out the most important implications of the remaining parameter uncertainty.
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Materials and Methods

Model description

Overview. The guiding principles during the development of the BiOeconomic mArine

Trophic Size-spectrum (BOATS) model were: 1. To maintain general applicability to a broad

range of marine ecosystems and fisheries; 2. To include sufficient ecological complexity to rep-

resent the fundamental dynamics of commercial fish biomass production, but remain simple

enough to be easily interpretable; 3. To minimize the number of uncertain parameters; 4. To

include a dynamical representation of fishing activity in the same framework as the ecosystem;

5. To enable long-term projections of the coupled natural-social system with robust and simple

external forcings.

Fig 1 gives a schematic representation of the model. Biomass production is determined by

the energy supplied from photosynthesis [25], the life history of individuals according to tem-

perature-dependent growth and mortality rates [26, 27], and stock-productivity-dependent

recruitment [28]. Feeding relationships are not explicit, a simplifying assumption motivated

by the diversity of marine life and predatory strategies, and the heterogeneity of species inter-

relationships in different regions. Life history is resolved in terms of growth from juveniles to

reproductively-mature individuals, through a continuous spectrum of size.

Fig 1. Schematic diagram of the main modules, components, and processes of the BOATS model.

doi:10.1371/journal.pone.0169763.g001
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The model is deterministic, discretized on a 2-dimensional spatial grid (representing the

vertically-integrated ecosystem), and steps forward in time from a set of initial conditions. The

model can include an arbitrary number of size spectra, each of which represents a ‘super-

organism’ that exists in all grid cells at all times. There is no simulation of horizontal move-

ment by fish or fishing boats, so that each cell is independent (that is, no interaction with other

cells). Although this ignores the life history aspects of larval transport and migration, such as

important environmental contrasts between spawning grounds and adult feeding grounds

[29], these were determined to be difficult problems when considering all types of commercial

species, and resolving movement would incur a large computational burden [21]. Fishing

effort is interactively determined in each grid cell, and evolves over time as a function of the

harvest in that grid cell, dependent on globally-constant economic forcings. In the following,

we refer to globally-constant scalars that determine the behavior of a model but do not vary

during or between simulations as ‘parameters’, and to a model with a particular set of parame-

ters as a ‘model variant’. Prescribed quantities that influence the model behaviour and may

vary during or between simulations are referred to as ‘forcings’ (which may be globally homog-

enous, or locally variable), while model state variables are referred to as ‘variables’. Key

assumptions are summarized in Table 1.

Below, we elaborate on details of the model. First, we present a brief overview of the ecosys-

tem module formulation and equations, and refer the reader to [24] for a full description. Sec-

ond, we describe the dynamic determination of fishing effort. Third, we discuss the allocation

of effort over the size spectra, representing the selectivity of fishing gear.

Ecological module. BOATS resolves an arbitrary number of size spectra that are defined

by their asymptotic sizes and, together, are defined as the sum of all consumers (including

both finfish and invertebrates) that were commercially harvested before the year 2006. Here

we discretize the commercial species among three spectra, which we refer to as small, medium,

and large groups, referring to their asymptotic size.

Table 1. Key model assumptions.

Essential Present version (could be changed)

Ecosystem

Mass is the ecological organizing variable Community represented by 3 spectra with different asymptotic sizes

Biomass individual flux follows the McKendrick-von Foerster

equation

No movement of fish between grid cells

Asymptotic size is the spectrum-defining trait Implicit feeding relationships

Production dependent on NPP, T, and stock-dependent

recruitment

Fish spawn continuously

Individual fish growth cannot exceed a physiological upper limit Potentially-commercial species aggregated by size (finfish and

invertebrates)

Economics

Fishing effort is the fundamental economic variable Open access (no management)

Technology determines catchability Local effort varies with the profitability of fishing at that point

Effort and biomass determine harvest through catchability Harvest is linear in effort and biomass

Selectivity function determines the size-structure of harvest No movement of fishing vessels between grid cells

Fleet dynamics parameter is globally constant

Cost per unit effort is globally constant

Price is globally constant, and does not vary by group or size

Catchability is globally constant, but is varied over time

doi:10.1371/journal.pone.0169763.t001
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The evolution of biomass in each group spectrum is represented using the McKendrick-

von Foerster model [30, 31],

@

@t
fk ¼ �

@

@m
gkfk þ

gkfk
m
� Lkfk; ð1Þ

wherem is the individual fish mass, t is time, fk (gwB m−2 g−1, where gwB are grams of wet bio-

mass) is the biomass spectrum of group k, γk (g s−1) the group growth rate, and Λk (s−1) the

group natural mortality rate.

Fish biomass growth rates are limited by a production spectrum that estimates the energy

(here assumed to be equivalent to biomass) that can be provided to any given size through tro-

phic transfer from primary production ξP,k (g s−1) [18, 25, 32], and are also limited by allome-

tric estimates of the rates at which individual fish can grow ξVB,k (g s−1) [28, 33, 34].

Underlying the simulated biomass spectra are the calculated flows of biomass energy from

photosynthesis to fish via the trophic transfer, which we express as

xP;k ¼
�C;kpm
fk

; ð2Þ

where π (gwB m−2 g−1 s−1) is the spectrum of energy from primary production available to

each individual of sizem that depends on the trophic scaling τ as the exponent of a power law

dependence, and ϕC,k is the fraction of primary production allocated to a commercial group k
[18, 25, 32]. Furthermore, we assume that the flow of biomass energy from small to large fish,

which occurs as individuals grow according to empirical allometric rules, cannot exceed a

maximum physiological rate

xVB;k ¼ Amb � kam; ð3Þ

where b (unitless) is the allometric scaling constant, A (g s−1) is the allometric growth rate, and

ka (s−1) is the mass specific investment in activity [28, 33, 34]. The allometric growth rate A is

the product of a temperature-independent rate A0 (g1−b s−1) and a van’t Hoff–Arrhenius

(exponential) temperature dependence aA(T) which is set by the growth activation energy of

metabolism ωa,A (eV) parameter [25].

The realized input energy to growth and reproduction in each size class, ξI (g s−1), is the

minimum of ξP and ξVB. This implies that, given an excess of food, individual fish will grow as

fast as biologically possible, given their temperature-dependent metabolism. If, instead, the

production of food at a given location is insufficient to fully feed the existing biomass, this pro-

duction will be equally partitioned among all individuals and will limit growth rates. When

there is no harvest applied, primary production, and thus ξP, generally limits growth over the

biomass spectrum.

The natural mortality rate Λk is based on an empirical relationship that depends on the

individual and asymptotic mass, and is first order in fish biomass, according to

Lk ¼ lm� hmhþb� 1
1;k ; ð4Þ

where h is the mortality allometric scaling andm1,k is the asymptotic mass of group k [26, 27].

The component of the mortality rate that is independent of mass, λ, is proportional to

ez1A0alðTÞ, where z1 is the mortality rate parameter and aλ(T) the temperature dependence of

mortality, which, as with growth, takes the van’t Hoff–Arrhenius functional form and is set by

the mortality activation energy of metabolism parameter ωa,λ (eV).
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Recruitment forms the bottom boundary condition to Eq (1), and is written as

fkðm0Þgkðm0Þ ¼ RP;k
Re;k

RP;k þ Re;k
: ð5Þ

where Re,k is the potential generation of new recruits from egg production, itself a function of

1. the primary production and the fish biomass that is able to reproduce and 2. the fraction of

larvae that survive to the recruit sizem0 [34], whereas RP,k is the potential flux of primary pro-

duction input to juvenile fish.

The model is forced with two-dimensional, global, monthly climatological fields of net pri-

mary production and temperature (S1 and S2 Figs). A schematic of BOATS, illustrating the

main modules, components, and processes, is presented in Fig 1, and the full set of biological

model parameters are presented in S1 Table.

The determination of fishing effort. Harvest depends upon fish biomass and the fishing

effort. Here, we interpret effort as the combined inputs used in the fishing process [35], essen-

tially fuel, labour and the construction and maintenance of fishing fleets, and we express it in

energy units of W m−2 (1 W = 1 J s−1). This choice facilitates comparison with the global effort

database of [1, 36]. Effort of this type is often described as ‘nominal effort’, and is defined here

as being independent of fishing technology.

The allocation of fishing effort, that is, the dynamics of fleets of fishing vessels, involves bio-

logical, social, and economic aspects that depend on numerous variables that operate on a vari-

ety of timescales [37, 38]. In order to provide a first step in prognostic modeling of these

interactions in a simple yet robust way, we couple the Gordon-Schaeffer open-access fisheries

economics model [39, 40] to our ecological model [24] in a discrete, temporally-resolved

framework. This open-access model assumes an absence of regulation, so that fishermen tend

to individually seek the greatest total harvest [39, 41], which ultimately leads to overharvest

and to the tragedy of the commons [42, 43]. Although this is not an economically or biologi-

cally optimal outcome, it is common, given the difficulty in establishing property rights over

living marine resources. Although management has made great advances in effectively coun-

teracting this tendency in some fisheries, particularly since the 1990s [44, 45], the open-access

result has historically dominated, and remains a cause of overfishing in many open-ocean and

coastal fisheries [46]. Subsidies can also shift behaviour from the open-access solution,

although wherever subsidies are capacity-building they often exacerbate the open-access prob-

lem [47].

In open-access fisheries, fishermen seek to maximize their individual harvests, and so are

driven by average instead of marginal profit [39]. Effort in a fish group k, Ek(t) (W m−2), there-

fore evolves in time as a linear function of the average profit (profit per unit effort), as

d
dt
EkðtÞ ¼ ke½average profit�k ¼

ke½revenuek � costk�
EkðtÞ

; ð6Þ

where κe (W2 m−2 $−1) is the fleet dynamics parameter [48] that determines the timescale at

which a change in average profit affects effort, and revenue and cost are in units of $ m−2 s−1.

The fleet dynamics parameter κe is set so that the adjustment of effort to changes in profit is

approximately 10 years, since fleets adjust to changes in biomass on roughly decadal timescales

[49–51]. Although the entry of effort into fisheries often occurs at a faster rate than exit, partic-

ularly when subsidies are applied, for simplicity we assume here that both rates are the same.

We assume that harvest is linear in both biomass and effort, and so for a given level of har-

vesting technology, a fixed amount of effort always catches the same fraction of biomass [40].

The ecological model discretizes biomass along a size spectrum, and so we define an analagous
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harvest spectrum. The harvest hk (gwB m−2 s−1 g−1) in the mass range dm is that which results

from effort Ek applied to group k during time interval dt, which we define as

hkdt dm ¼ qkskEkfkdt dm; ð7Þ

where qk (m2 W−1 s−1) is the catchability and σk (unitless) is the size-dependent selectivity of

harvest on group k (discussed further in the following subsection).

The catchability qk of fish in group k is the fraction of selectable biomass harvested for a

unit amount of effort [52]. The catchability encapsulates the ease with which fish can be har-

vested given the inherent characteristics of fish, and the level of applied technology, including

both embodied and disembodied aspects of technology [11, 53]. Thus, the adoption of

improved vessels and fishing gear, sonar, communications, and navigation technologies, as

well as improved skipper knowledge and efficiency practices, would all cause an increase of qk.
In contrast, qk does not include technological gains that reduce the cost of fishing per unit

effort. Nor does qk include technological gains that might enhance the market value of fish or

provide access to new markets, which would increase the ex-vessel price.

The revenue spectrum rk ($ m−2 s−1 g−1) is the ex-vessel price pk ($ gwB−1, the price that

fishermen are paid at port) of the harvest multiplied by the harvest spectrum hk of Eq (7), and

so rk dtdm gives the revenue associated with the harvest of group k for fish of mass range dm at

time t during dt,

rkdt dm ¼ pkqkskEkfkdt dm: ð8Þ

Studies have shown that when numerous species are considered together, a scale that concep-

tually matches our approach, the price is not strongly related to the trophic level [54]. Further,

given the unpredictability of fish prices as a function of size, which relates to complex factors

such as transportation, processing and societal preferences, we presently assume that the ex-

vessel price is globally constant.

The revenue component of the change in effort expressed in Eq (6) is therefore calculated

by integrating over mass, so that

revenuek ¼
Z m1;k

m0

rkdmdt ¼ qkEkdt
Z m1;k

m0

pkskfkdm: ð9Þ

Note that, although the harvest is resolved as a size spectrum, there is only a single scalar value

of effort for a given fish group k at a given location and time, since it is assumed that the fishing

effort does not discriminate among size within each group, other than as determined by the

gear type through the selectivity function.

We assume that cost is proportional to effort [37], such that

Ckdt ¼ ckEkdt; ð10Þ

where Ck is the cost ($ m−2 s−1) associated with the effort exerted on fishing group k, and ck ($

W−1 s−1) is the cost per unit effort. We estimate the global cost per unit effort forcing by

assuming that the real world was close to an open-access equilibrium between 1990 and 2006,

so that total global revenue was equal to the total global cost, which is a reasonable first-order

assumption based on the fishing cost database of Lam et al., [55] (see Table 5 of that article).

Thus, we divide the global revenue from the SAUP harvest database by the global effort as

reported in [1]. We presently assume that cost has no spatial dependence, for simplicity.

Although this ignores the potentially-important role of the transit distance between fishing

grounds and ports, it avoids a great deal of complexity, and could be revisited in future work.
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Linking effort to harvest: harvest selectivity. The size selectivity curve σk(m) plays a fun-

damental role in determining the size spectrum of fish biomass and harvest [56–59]. A variety

of functional forms have been used to describe the selectivity, all of which avoid the smallest

sizes, and can be generalized as either dome-shaped or sigmoidal. Dome-shaped curves are

used for selective gears such as gillnets, driftnets, and longlines, which are designed to avoid

larger organisms that belong to non-targeted species. Sigmoidal curves are used for towed

gears such as trawls and seines, as well as traps and dredges, that do not discriminate against

large organisms [56]. Given that between 65% [55] and 75% [60, 61] of global harvest is associ-

ated with sigmoidal selectivity gear types (S2 Table), and because the modeled effort is by con-

struction perfectly selective by group, perfectly avoiding the harvest of larger organism types, a

sigmoidal form is most appropriate. We adapt the formulation of [34],

sk ¼ 1þ
m
mY;k

 !� cs=d2

2

4

3

5

� 1

; ð11Þ

wheremΘ,k is the threshold mass of fish in group k, and cσ is the selectivity slope, which we

assume takes the same constant value over all groups (S3 Fig). We interpret the selectivity to

be sigmoidal in length due to the physical constraints of nets [57], and therefore convert to

mass using the mass-length relationshipm ¼ d1ld2 , wherem and l are fish mass and length,

respectively, and δ1 and δ2 are constants [62].

The threshold mass of fish for a group is defined in terms of the maturity massmα,k such

thatmΘ,k = dmΘ,kemΘ,kmα,k. By means of the parameter dmΘ,k, we adjust the threshold mass of

the large group to 25% of the maturity mass, that of the middle group to 50% of the maturity

mass, and leave the threshold mass of the small group equal to the maturity mass. This could

be thought of as representing proportionally greater bycatch of the juveniles of larger fish spe-

cies. The parameter emΘ,k is used solely to test uncertainty in the threshold mass. Table 2 lists

the economic model forcings and variables.

Table 2. Economic forcings, parameters and variables.

Name Value [Range] Unit Eq Reference

Forcings

qk(t) Catchability - m2 W−1 s−1 Eq (7) [40]

pk Ex-vessel price - $ gwB−1 Eq (8) [37]

ck Cost per unit effort - $ W−1 s−1 Eq (10) [37]

Parameters

κe Fleet dynamics parameter 10−6 W $−1 s−1 Eq (6) [51]

cσ Slope of σk(m) 16.7787 [12, 24] Unitless Eq (11) [34]

dmΘ,k
Selectivity mass adjustment (1 0.5 0.25) Unitless Eq (11) -

emΘ,k
Selectivity mass scaling 0.6198 [0.5, 1.5] Unitless Eq (11) -

σk(m) Selectivity function - Unitless Eqs (7) and (11) [56]

Variables

hk(m, t) Harvest spectrum - gwB m−2s−1g−1 Eq (7) -

Ek(t) Fishing effort - Wm−2 Eq (7) [40]

rk(m, t) Revenue spectrum - $ m−2s−1g−1 Eq (8) -

Ck(t) Total cost - $ m−2 s−1 Eq (10) [37]

doi:10.1371/journal.pone.0169763.t002
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Assessment of parameter uncertainty and calibration

In order to evaluate uncertain model parameter values, we compare model simulations with

two primary sources of global data. The first is stock assessment data as compiled in the RAM

Legacy database [63]. These data provide an estimate of fish biomass, which is extremely use-

ful; however, for most ecosystems, the stock assessments do not include the entirety of har-

vested species, limiting their comparability to BOATS. Therefore, we also make use of global

catch data, described in greater detail below, as reconstructed by the Sea Around Us Project

(SAUP) [60, 61].

Because the harvest depends on economic as well as ecological forcings, there are multiple

economic and ecological combinations that can produce the same harvest in a given region.

On its own, this could lead to an intractable problem, with too many degrees of freedom. How-

ever, we can take advantage of the fact that there is a maximum rate of fish production that an

ecosystem can achieve at any given location. Because of the historical increase of fishing inten-

sity, most ecosystems are presently either close to this peak value (fully exploited), or have

passed it and gone into decline (over-exploited) or collapse [64]. We identify the observed

maximum multi-year harvest for each LME (which we denote as lHobs
LMEmax, where l = 1, . . ., 66

is an index for the LMEs) as an estimate of the peak fish that can be produced by the ecosystem

when subjected to a transient increase of fishing intensity. Although most of these estimates

will individually include uncertainties on the order of a factor of two, arising from uncertainty

in catch reconstructions [65], the large number of LMEs and their global distribution should

provide sufficient sampling to compensate these errors.

To evaluate the full uncertainty range of model parameters, including interactions between

the parameters, we used a Monte Carlo approach [66]. This involved first determining a proba-

bility distribution for each parameter of interest, and then randomly generating over 10,000

values for each parameter from each distribution (Fig 2). In order to compare with the

observed harvest peaks, lHobs
LMEmax, we ran a transient simulation for each parameter combina-

tion, gradually increasing catchability over 200 years. In the following, we describe the simula-

tions, the data, and the comparison between them.

Transient simulations with increasing catchability. The parameters considered in the

Monte Carlo simulations are presented in Table 3, and further detailed in S1 Table. We con-

sider the parameters that have the strongest influence on model biomass, as detailed in the full

description of the ecological module [24]. For each parameter, we reviewed the literature for

statistically-estimated ranges of values and their probability distributions. When such a statisti-

cal range was not available, we used the literature to inform the parameter choices assuming a

uniform probability distribution.

For each parameter set, we first spin up the model with a 100-year simulation at a low and

constant level of catchability (1 × 10−5 m2 W−1 s−1), which is designed to result in negligible

harvests that are consistent with that set of parameters. To span an appropriate range of catch-

ability values, following the first 100 years of constant catchability, we increase catchability by

5% per year for 200 years. This rate of increase ensures that each simulation will produce a

peak harvest under all parameter combinations, and is broadly consistent with estimates of

technological increase [53].

Observational data. Under intense harvest, the harvest to biomass ratio reflects the ability

of a standing stock to produce harvestable biomass each year. We obtained harvest and bio-

mass data from the RAM Legacy stock assessment database [63], and used them to calculate

harvest to biomass ratios (H:B hereafter). Stock assessments, by their nature, target individual

species in particular geographic regions. Because BOATS represents all commercial species, its

results can only be compared with stock assessments when they represent a significant fraction
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Fig 2. Schematic diagram of the Monte Carlo simulation procedure and selection of ensemble members.

doi:10.1371/journal.pone.0169763.g002

Table 3. Monte Carlo simulation parameter summary results. MC Distribution is the sampling distribution of each parameter used in the Monte Carlo simu-

lation, where X (p1, p2) represents the probability distribution (N for normal, U for uniform), and p1 and p2 represent the mean and standard deviation of the

parameter, respectively. Opt. refers to the subset of optimized Monte Carlo simulations, N.O. to the subset of non-optimized simulations, SD refers to the stan-

dard deviation, and KS p-value is the p-value of the 2-sample Kolmogorov-Smirnov test applied to the optimized and non-optimized sets.

Parameter Name Sampling Distribution Mean Opt. Mean N.O. SD Opt. SD N.O. KS p-value

ωa,A Growth activation energy N (0.45, 0.09) 0.41 0.44 0.08 0.09 2.77 × 10−4

ωa,λ Mortality activation energy N (0.45, 0.09) 0.47 0.45 0.08 0.09 0.05

b Allometric scaling exponent U(0.7, 0.05) 0.65 0.70 0.03 0.05 1.47 × 10−16

A0 Allometric growth constant N (0.46, 0.5) 4.42 4.47 0.48 0.50 0.18

α Trophic efficiency U(0.13, 0.04) 0.15 0.13 0.03 0.04 1.04 × 10−11

β Predator to prey mass ratio U(5000, 2500) 5484 4991 2357 2507 0.08

τ Trophic scaling log(α)/log(β) −0.22 −0.25 0.02 0.04 5.27 × 10−17

kE Eppley constant N (0.0631, 0.009) 0.06 0.06 0.01 0.01 0.34

Π* Nutrient concentration N (0.37, 0.1) 0.35 0.37 0.09 0.10 0.06

ζ1 Mortality constant N (0.55, 0.57) 0.01 0.55 0.40 0.57 9.48 × 10−18

h Allometric mortality scaling N (0.54, 0.09) 0.49 0.54 0.08 0.09 4.39 × 10−5

se Egg survival fraction U(0.025, 0.014) 0.02 0.03 0.01 0.01 0.22

emΘ,k Selectivity position scaling U(1, 0.288) 0.88 1.00 0.29 0.29 8.89 × 10−7

cσ Selectivity slope U(18, 3.46) 17.8 18.0 3.46 3.47 0.84

doi:10.1371/journal.pone.0169763.t003
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of the total ecosystem. Analysis of the RAM Legacy stock assessment database demonstrated

that there were a total of 8 LMEs where at least 40% of the of the harvest from the SAUP data-

base were represented: Baltic Sea, Barents Sea, Patagonian Shelf, Benguela Current, North Sea,

Okhotsk Sea, Gulf of Mexico, and East Bering Sea. For each of these LMEs, we calculated aver-

age harvest and biomass from the years that were common to all of the stocks represented.

We calculate peak harvest using the Sea Around Us Project (SAUP) database [60, 61] aggre-

gated over functional groups at the scale of Large Marine Ecosystems (LMEs). To estimate the

peak harvest at each LME, lHobs
LMEmax, we take the mean harvest of the 10 years with largest har-

vest. To compare observed LME peak harvests to those simulated by BOATS, i;lHsim
LMEmax where i

is an index for the Monte Carlo simulations, we convert both to area-specific LME harvests

[67], and ignore a number of high latitude Large Marine Ecosystems (LMEs) due to well-estab-

lished biases in chlorophyll estimates [68, 69] which carry through to estimates of net primary

production. We therefore neglect the following LMEs: Antarctica, Kara Sea, Laptev Sea, East

Siberian Sea, Canadian Eastern Arctic—West Greenland, Hudson Bay Complex, Beaufort Sea,

Canadian High Arctic—North Greenland, Central Arctic, and Northern Bering—Chukchi

Seas. Since the Black Sea is an inland sea ecosystem, and not comparable to the other LMEs,

we ignore it as well [67]. The harvest in these 11 LMEs is a negligible fraction (< 1%) of the

total harvest over all LMEs, and so ignoring them has a negligible impact on our analysis. S3

Table lists all of the LMEs.

The fish biomass modeled in BOATS includes three groups defined by asymptotic size:

small (S), medium (M), and large (L) groups (S4 Table). One of our aims is to compare this

simple size-based community structure with the SAUP observations. Although most of the

SAUP functional groups clearly denote size, we define an association when this is not the case

(eg. large shrimp). For cases where the size group is vague (eg. cephalopods) or there are

mixed sizes in a functional group (eg. Small to medium flatfishes) we denote these as other

(O). We assume the other (O) fraction of harvest follows the same size distribution as the iden-

tified groups, such that

G
SþM þ L

¼
Ga

Sa þMa þ La
and Sa þMa þ La ¼ SþM þ Lþ O; ð12Þ

where G represents a size group (S, M, or L) and the subscript a represents the adjusted har-

vest. This adjustment is usually small since the other (O) fraction of harvest is generally small.

Analysis of Monte Carlo suite of simulations. The Monte Carlo simulations (Table 3)

reveal a wide range of biomass and harvest results. Fig 3 displays the maximum global harvest

(which we denote as iHobs
Globalmax) and biomass integrated over all LMEs. Biomass ranges over 5

orders of magnitude, has a mean and standard deviation of 0.22 and 0.63 Gt wet biomass,

respectively, and is strongly positively skewed (that is, there are relatively more randomly-gen-

erated parameter combinations that produce low biomass (S4 Fig). The smallest biomass val-

ues are mostly attributable to a low trophic scaling (Fig 4A) or a high mortality constant (Fig

4C). Meanwhile, the iHsim
Globalmax values range over more than 4 orders of magnitude (the smallest

3% of the runs were not included in Fig 3, to improve readability). The mean and standard

deviation of harvest are 40 and 79 Mt y−1, respectively, and as with biomass, the harvest distri-

bution is strongly positively skewed (S4 Fig). It is notable that, despite the 4-order of magni-

tude range in the iHsim
Globalmax across the full Monte Carlo suite, the mean of the iHsim

Globalmax is less

than a factor of 2 different than the reconstructed value of 64 Mt y−1 [60, 61], suggesting that

our priors were not unreasonable.

We then select 100 optimal parameter combinations, representing approximately 1% of the

total, by discarding any that violate acceptable ranges among four types of constraints:
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1. Global harvest integrated over all LMEs for the year of maximum harvest,Hobs
Globalmax. There

are significant uncertainties in the results reported in the SAUP harvest database [70], par-

ticularly in the corrections for illegal, unreported and under-reported harvest. We therefore

consider a generous estimate of the uncertainty, allowing the iH sim
Globalmax to range between

70 and 150 × 1012 gwB y−1. We find that 9.1% of the simulations satisfy this constraint,

while 84.5% and 6.4% have too small and too large a peak harvest, respectively.

2. Size structure of catch. Founded on analysis of the SAUP database, we select simulations

where the iH sim
Globalmax for the medium size group is at least 30% that of the small group har-

vest, and those where the large harvest is at least 10% but less than 80% of the small harvest.

This guarantees that the modeled harvest is not unrealistically dominated by a single group.

We find that 29.1% of the simulations satisfy the group constraints, which, when taken

together with the total harvest constraint, leaves us with 6.1% of the total simulations.

3. The harvest to biomass (H:B) ratio of well-assessed ecosystems. In our analysis of the RAM

legacy stock assessment database, we found a wide range of H:B among the 8 analyzed

Fig 3. Pearson r2 of Monte Carlo simulations. Each point represents the global biomass and harvest (iH
sim
Globalmax

)

integrated over all LMEs for the year at which the global harvest is at a maximum, while the color represents the

Pearson r2 calculated for the modeled area-specific individual LME harvests (i;lH
sim
LMEmax

) compared to the peak

area-specific individual LME harvest from the SAUP (lH
obs
LMEmax

). The grey line represents a reference global

harvest of 100 × 1012 gwB y−1.

doi:10.1371/journal.pone.0169763.g003
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Fig 4. Summary results of Monte Carlo simulations. Horizontal and vertical axes as in Fig 3. Circle color

represents (A) Trophic scaling τ, (B) Allometric growth scaling constant b, or (C) Mortality constant ζ1. The

grey line represents a reference global harvest of 100 × 1012 gwB y−1.

doi:10.1371/journal.pone.0169763.g004
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LMEs, but in all cases, it was less than 0.4 y−1. We apply this constraint by calculating the

modeled H:B at peak harvest (i;lH sim
LMEmax) at each of the 8 LMEs. 74.2% of the Monte Carlo

simulations satisfy this H:B constraint when applied to the 8 LMEs. Taken together with the

prior two constraints, we arrive at 3.9% of the simulations. Although there is great potential

to use improved stock assessment data in the future, for the present work we only apply the

upper limit on the feasible H:B of these 8 LMEs.

4. The relative productivity of LMEs. We rank the remaining simulations by calculating the

correlation between the modeled peak harvest of each LME (i;lH sim
LMEmax) and the recon-

structed peak LME harvest from the SAUP (lHobs
LMEmax). Because the LMEs span a wide

range of NPP and temperature, analyzing the simulated distribution of harvest among the

LMEs provides a powerful means by which to evaluate model sensitivity to these two critical

input variables. We consider the Pearson product-moment correlation coefficient r (plotted

as r2), of the harvest per unit area in each LME, but also the log10 transformed harvest per

unit area [67] (not shown), as well as Spearman’s rank correlation rs. We find a wide range

of correlation values from among the members of the Monte Carlo suite, but there are clear

patterns of improving correlation with increasing biomass within the range of acceptable

harvest which is consistent over the three correlation techniques considered (Fig 3). From

among the simulations with acceptable total harvest, the r2 ranges from close to zero to

0.59, whereas Spearman’s rs ranges from −0.42 to 0.76. We select the best-correlated 1% of

the total simulations, corresponding to an r2 larger than 0.45.

Table 3 summarizes the results of the analysis, and presents the mean of the optimized (col-

umn Mean Opt.) and non-optimized (column Mean N.O.) parameter values, as well as their

standard deviations (columns SD Opt. and SD N.O.). Fig 5 shows the transient time series of

total LME fish biomass, harvest, and effort for the optimized set. Total LME harvest steadily

increases until it reaches a peak, beyond which a sufficient portion of the global ocean becomes

recruitment-limited and harvest begins to fall. All simulations show a monotonic decrease of

biomass as catchability increases, since the selectable biomass is progressively reduced towards

a limit, the critical biomass, that is discussed in the next section. This occurs in an increasing

number of grid cells as greater catchability allows fishing to become profitable. Effort follows

the same general pattern as harvest, but consistently lags it. The timescale of biomass and effort

change is set mostly by the timescale of technology change, yet effort also responds with the

timescale of adjustment to revenue changes (the fleet dynamics parameter κe) which delays the

change of effort relative to biomass and harvest changes (Eq (13)). We overlay the optimized

ensemble of simulated harvests in Fig 5B with two versions of the reconstructed SAUP harvest

(black line [60, 61], red line [71]), assuming that year 1950 of the SAUP harvest corresponds to

year 100 of the 300-year transient simulation (when catchability begins to increase). Both

reconstructions show the same general trend as the simulated transient simulations over the

historical period, and the red line (which attempts to correct for illegal and unreported catch)

is close to the median of the simulations. Although the highest simulated values are possibly

over-estimates of the global potential fish production, it is useful to include these variants in

the ensemble given that their parameter combinations may represent aspects of the ecosystems

realistically, even though they allow too much harvest.

Results and Discussion

The critical fish biomass

In considering the fundamental dynamics that arise from the BOATS formulation, we arrive at

a useful observation regarding the equilibrium solution of Eq (6) for the evolution of effort.
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Fig 5. Total (A) biomass, (B) harvest, and (C) effort over all LMEs for the optimized Monte Carlo

transient simulations. Line colors represent, for each optimized ensemble member i, the Pearson r2 of the

area-specific BOATS harvest at each LME l (i;lH
sim
LMEmax

) and the peak harvest of each LME based on the SAUP

(lH
obs
LMEmax

). Black [60, 61] and red [71] lines in (B) correspond to two versions of the reconstructed SAUP

harvest, assuming that the year 1950 of the SAUP harvest corresponds to the time in our transient simulations

when catchability begins to increase.

doi:10.1371/journal.pone.0169763.g005
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We begin with the equations for revenue and cost, Eqs (9) and (10), respectively, and apply

them to Eq (6) to find that

d
dt
Ek ¼ ke qk

Z m1;k

m0

pkskfkdm � ck

 !

: ð13Þ

Further assuming that price does not depend on mass, we can write the equilibrium solution

of Eq (13) as

Z m1;k

m0

skfkdm ¼
ck
pkqk
¼ Fcrit

k : ð14Þ

This states that the selectable biomass (the quantity on the left hand side) of group k is, at

steady state, determined solely by the ratio of economic parameters, ck/pkqk. This ratio can also

be interpreted as a critical threshold, which we refer to as Fcrit
k , which determines the biomass

density that is required at any given grid point in order for harvest to be profitable. If the equi-

librium biomass ignoring harvest is less than Fcrit
k , then harvest cannot be profitable and there

will be no harvest at equilibrium. In this case, the biomass will be controlled by primary pro-

duction and temperature, by means of Eq (1). Alternatively, if the selectable group biomass

exceeds Fcrit
k , harvest will occur, driving the selectable biomass to asymptotically approach Fcrit

k ,

while the unselectable portion of the biomass will continue to be driven by primary production

and temperature.

The exclusive dependence of Fcrit
k on economic parameters is an important consequence of

the open access assumption used in the present version of the BOATS model. Although it

would not be expected to hold true in the real world, given for example the movement of fish,

multi-species fisheries, and the lack of steady-state, it is a useful simplifying concept for

explaining the first-order tendencies of fish biomass in the absence of effective management.

General characteristics of the optimized bio-economic model

In order to illustrate the basic characteristics of the coupled model, we use the parameter com-

bination that gives the highest correlation (r2) between modeled and observed harvests at the

scale of LMEs. While we initially focus on results with this single set of model parameters for

clarity, it is preferable to use an ensemble of optimal models, in order to better span the

uncertainty.

The predictive ability of this model variant can be assessed by comparing the correlation of

the SAUP harvest with the primary production used to force the model (Fig 6A), the simulated

unharvested LME biomass by LME (Fig 6B), and the modeled harvest (Fig 6C). We find that

NPP alone explains 32% of the variability in the SAUP harvest, similar to prior works [72],

while unharvested model biomass explains 54%, and modeled harvest explains 59%. All corre-

lations have a p-value<0.01. Thus, the inclusion of the interactive economics provides an

improvement to the prediction of harvest, even though it did not introduce additional parame-

ters into the optimization procedure.

Fig 7 illustrates some aspects of the model by focusing on a single model grid point in the

East Bering Sea LME (64˚N, 165˚W). A detailed description of the ecological model at this site

is provided in [24], and showed that the slope of modeled biomass spectra is consistent with

observations for a wide range of temperature and NPP values. Here, harvest alters the slope

and intercept of biomass spectra (Fig 7A), truncating the large ends of the spectra, consistent

with other modeling studies [73]. The truncation occurs because larger fish must grow from

smaller fish, and so larger fish are affected both by direct harvesting and the reduction in
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Fig 6. SAUP reconstructed harvest as described by primary production, modelled unharvested

biomass, and modelled harvest at the LME scale. Correlations are for the model variant from the Monte

Carlo simulation that best represents the SAUP database. The circle color represents the average

temperature of the LME, whereas the number represents the LME number (S3 Table). All quantities are

plotted in log10 space to improve readability. r2 is the squared Pearson product-moment correlation

coefficient, and rs is Spearman’s rank correlation. All 6 correlations have a p-value<0.01. (A) NPP vs. SAUP

harvest. (B) Modelled unharvested biomass vs. SAUP harvest. (C) Modelled harvest at peak harvest state vs.

SAUP harvest. The black line is the identity line (1:1 line).

doi:10.1371/journal.pone.0169763.g006
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Fig 7. Steady state biomass (A) and harvest (B) size spectra. Black solid, dashed, and dot-dashed curves

represent unharvested small, medium, and large groups, respectively, whereas grey curves represent

harvested spectra. Thick curves represent total biomass and harvest spectra. Curves are equilibrium

solutions of simulations for a site in the East Bering Sea LME (64˚N, 165˚W) forced with annual average net

primary production and temperature using a timestep of 15 days.

doi:10.1371/journal.pone.0169763.g007
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growth from smaller fish. Moreover, the loss of large, spawning individuals results in a reduced

production of eggs and so a reduction in recruitment (Eq (5)) and juvenile biomass. Harvests

peak near the threshold sizemΘ (Fig 7B), and decline both at smaller sizes (because of sharply

decreasing selectivities), and at larger sizes (because of rapidly decreasing biomasses and

growth rates).

It is worth noting that, at low harvest and high biomass, the input energy from the transfer

of primary production to fish ξP (Eq (2)) is partitioned across a larger number of individual,

and is generally the limiting factor for growth. On the other hand, at high harvest and low bio-

mass, the same energy from primary production is partitioned to a smaller number of individ-

uals, increasing their potential growth rates, to the point at which growth becomes limited by

the maximum physiological rate, expressed by ξVB. Thus, all else being equal, increasing har-

vest and decreasing biomass determines a transition from productivity-limited to physiologi-

cally-limited growth in the model.

Fig 8 illustrates the impact of NPP (ranging from 500 to 3000 mg C m−2 d−1) and catchabil-

ity (ranging from 10−5 to 10−3 m2 W−1 s−1) on biomass and harvest. Each harvest (Fig 8A) and

fraction of prisitine biomass remaining (Fig 8B) value is the equilibrium result of a 1000-year

simulation using a 15-day timestep and constant forcing of annually-averaged NPP and tem-

perature. For low catchability and low NPP (and hence low unharvested biomass), harvest is

zero (0.01 gwB m−2 y−1 contour in Fig 8A) because the fishery is not profitable (Eq (14)). With

increasing catchability or increasing NPP, we eventually surpass the Fcrit
k limit for a profitable

fishery, and arrive at positive harvest. For a given level of NPP, increasing catchability initially

results in rising harvest, until the peak is reached, after which further increases of catchability

deplete the ability of the population to produce biomass due to stock-limitation of recruitment

[74]. As a result, there is a peak equilibrium harvest for every value of NPP. For high catchabil-

ity, both harvest and the fraction of pristine biomass approach zero (0.01 gwB m−2 y−1 and

0.001 contours at the right of Fig 8A and 8B, respectively).

Insights on uncertain parameters

We use the two-sample Kolmogorov-Smirnov test (Table 3, column KS p-value) to compare

the distributions of the optimized and non-optimized parameters to determine if they are gen-

erated from the same distribution ([75], p. 428-441). For 7 parameters, we find no difference

in the distributions that generate the optimized and non-optimized simulations. However, for

the remaining 6 parameters, there is a clear statistical difference (that is, small p-values). Prom-

inent differences are in the mortality parameters z1 (Fig 4C) and h, that have significantly

lower means and standard deviations. The difference between the optimized and non-opti-

mized mortality rate z1 is particularly strong. This indicates that, in our model, only the lower

range of possible mortality rates [26] can reproduce the present-day global peak harvest distri-

butions. The optimized mean value of the allometric scaling parameter, b, which we assume

follows a uniform distribution ranging from 0.61 to 0.78, is 0.65, that is, indistinguishable

from the 2/3 value that is widely used in the literature [76], but somewhat smaller than the

0.75–0.79 value of other studies [25, 77]. We also find a preferred trophic efficiency of 0.15, sta-

tistically higher than that of the sampling distribution, and encouragingly close to the value of

0.15 that is widely applied. The activation energy of metabolism for mortality, ωa,λ, is not sta-

tistically different from the sampling distribution, but that for growth ωa,A is, with a statistically

significant lower mean. This lends support to the idea that growth and mortality rates are not

subject to the same temperature dependence [78], and suggests that mortality may be more

sensitive to temperature variations than growth.
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The ensemble optimization reveals that acceptable parameter combinations have significant

correlations between some model parameters. Some of these correlations, including the two

strongest ones, are shown in Fig 9. The mortality constant, z1, and the allometric scaling of

mortality, h, are negatively correlated in the ensemble (Pearson correlation coefficient r =

−0.82, p-value<0.01) and compensate each other so that a high mortality constant is balanced

by a weak size-dependence (low h) of mortality (Fig 9A). We also find a positive correlation

(r = 0.68, p-value<0.01) between the mortality constant and the trophic scaling (Fig 9B)

Fig 8. Model sensitivity to NPP and catchability q. (A) Total harvest and (B) Fraction of pristine biomass

remaining as functions of NPP and q.

doi:10.1371/journal.pone.0169763.g008
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Fig 9. Harvest to biomass ratio (H:B) at peak harvest in terms of three sets of parameter

combinations. Circles are members of the optimized set of model parameters. Circle color represents the H:

B (y−1) calculated as the total harvest (iH
sim
Globalmax

) over the total biomass at the year of global peak harvest

integrated over the LMEs, while the circle size is proportional to the peak harvest. Horizontal and vertical axes

correspond to parameter values from the Monte Carlo suite. Thick orange, red, and peach circles correspond

to the low, medium, and high H:B members that are used in Fig 10. The black line in (C) is the identity line (1:1

line).

doi:10.1371/journal.pone.0169763.g009
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suggesting that higher mortalities can be balanced by increased energy transfer to large size

classes. Finally, we highlight a positive correlation (r = 0.41, p-value<0.01) between the activa-

tion energies of growth and mortality (Fig 9C), which control the temperature dependence of

these rates. This covariation indicates that, in order to maintain harvests in agreement with

observations, temperature-driven increases in mortality need to be balanced by concurrent

increases in growth rates. As noted above, the temperature dependence of mortality generally

exceeds the temperature dependence of growth, with 80% of the optimized ensemble lying

above the 1:1 line.

Fig 9 also highlights the impact of several fundamental model parameters on simulated H:

B. Low mortality constants, high allometric growth exponents, and high growth rate constants

tend to occur with high H:B (r between z1, b, and A0, respectively, with H:B are −0.49, 0.65,

and 0.30, p-value<0.01). Across the 105 members of the optimized Monte Carlo set, the H:B

calculated for the global peak harvest (calculated by taking the ratio of total harvest over the

LMEs, iHsim
Globalmax, to the total biomass over the LMEs) varies by approximately a factor of 5,

indicating that between 5 and 25% of the standing stock of biomass is harvested every year at

the peak. This range indicates that, within the limits allowed by the observational constraints,

similar harvest can be sustained by substantially different levels of biomass.

Motivated by the range in model H:B, we select three members from the optimized ensem-

ble that represent low, medium, and high values of this quantity, to analyze the spatial patterns

of harvest and biomass at the catchabilities corresponding to the peak harvest over the LMEs.

The low and high variants are selected based on their H:B and their similar global peak harvest

(calculated to be 214 and 193 × 1012 gwB y−1, respectively, when including the LMEs as well as

the high seas), whereas the medium member is the parameter set that provides the best correla-

tion with SAUP data (described above). When integrated over the LMEs, the total harvest for

the low, medium, and high variants are 122, 102, and 86 × 1012 gwB y−1, respectively, corre-

sponding to total biomasses of 1.6, 1.5, and 0.2 × 1015 gwB.

Maps (Fig 10), and cumulative harvest distributions (S5 Fig), of the peak harvest and bio-

mass state demonstrate fundamental differences in spatial patterns between the members.

Harvest in the low H:B member is dominated by high latitude, high biomass regions with slow

fish production, whereas harvest in the high H:B member is mostly in low latitude, low bio-

mass regions with rapid fish production. The spatial concentration of harvest also differs

Fig 10. Two-dimensional global maps of harvest and biomass for three model variants with varying global harvest to biomass ratio (H:B). Maps

show the annual average of the year of peak harvest. Harvest for low (A), medium (B), and high (C) H:B. Biomass for low (D), medium (E), and high (F) H:B.

doi:10.1371/journal.pone.0169763.g010
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dramatically, with over 60% of harvest taking place at locations with high harvest rates (above

3 gwB m−2 y−1) in the low H:B member, whereas harvest is much more widely distributed in

the high H:B member, with only about 25% of harvest taking place at location with high har-

vest rates. Because of important differences in the model sensitivity to temperature (Fig 9C),

contrasting projections of climate change impacts in low versus high latitude ecosystems [79],

as well as potentially different resilience of low and high biomass conditions to overfishing, it

will be important to further constrain the uncertainty in H:B.

The significant variability of H:B among the 100-member ensemble arises in part from the

generous ranges of observational uncertainty applied in the parameter optimization. Expand-

ing and strengthening the observational constraints, for example from stock assessments

aggregated at the LME scale, will further narrow the uncertainty in model parameters, and

reduce the ensemble range of H:B. Future work should therefore strive to find stronger con-

straints on harvest and biomass, such as by focusing on a subset of the best-studied LMEs.

Conclusion

The BOATS model represents the first-order features of global fish biomass and economic har-

vest using fundamental concepts of macroecology, life-history, and resource economics in a

unified spatially-resolved framework. The economic module of BOATS is directly coupled to

the biophysical model by means of the fishing effort, which responds dynamically to net profits

at the grid scale. Given the complex nature of real-world ecosystems and of the social and eco-

nomic processes that determine fishing effort and harvest, the ability of BOATS to explain a

significant amount of the global spatial variability in harvest is promising, and makes it suitable

for exploratory global studies of fisheries dynamics that include both human and environmen-

tal forcings.

A distinctive feature of this work is the use of a Monte Carlo approach to parse the uncer-

tainty in the model parameters and to determine which parameter sets generate the best repre-

sentations of present-day harvest from the Sea Around Us Project database. We find that

although most parameter combinations among the probability distributions of our priors are

unable to produce the observed fish harvest, the central values of the distributions are associ-

ated with a global harvest that is reasonably close to observations. By discarding unacceptable

parameter combinations using a series of catch and biomass criteria, we arrive at an optimal

ensemble of about 100 parameter combinations that perform well, while still retaining a sub-

stantial degree of parameter uncertainty. These optimal parameter combinations tend to

include rates of natural mortality among the lower range of the sampling distribution, a result

that deserves further attention given that natural mortality rates are difficult to constrain from

observations. We also find that the temperature dependence of mortality is most often greater

than the temperature dependence of fish growth, which has important implications in a warm-

ing ocean. Realistic global harvests can be achieved by parameter combinations that result in

different biomass distributions, and range from solutions dominated by slowly-growing abun-

dant biomass in high latitudes and coastal regions, to solutions dominated by fast-growing low

biomasses in low-latitudes and open-ocean waters. These remaining uncertainties allow a

potential range of responses of the global fishery to human and climate-driven perturbations,

which could be further narrowed down by considering improved biomass-based observational

constraints.
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